Nonselfadjoint resonance problems with nonlinearities of superlinear growth

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Sturm-liouville Problems with Asymmetric, Superlinear Nonlinearities

We consider the nonlinear Sturm-Liouville problem −(p(x)u′(x))′ + q(x)u(x) = f(x, u(x), u′(x)), in (0, π), (1) c00u(0) + c01u ′(0) = 0, c10u(π) + c11u ′(π) = 0, (2) where p ∈ C1[0, π], q ∈ C0[0, π], with p(x) > 0, x ∈ [0, π], and ci0 + ci1 > 0, i = 0, 1. We suppose that f : [0, π] × R2 → R is continuous and there exist increasing functions ζl, ζu : [0,∞) → R, and a constant B, such that limt→∞ ...

متن کامل

Second Order, Sturm-liouville Problems with Asymmetric, Superlinear Nonlinearities Ii

We consider the nonlinear Sturm-Liouville problem −(p(x)u′(x))′ + q(x)u(x) = f(x, u(x)) + h(x), in (0, π), c00u(0) + c01u ′(0) = 0, c10u(π) + c11u ′(π) = 0, where: p ∈ C1[0, π], q ∈ C0[0, π], with p(x) > 0 for all x ∈ [0, π]; ci0 + ci1 > 0, i = 0, 1; h ∈ L2(0, π). We suppose that f : [0, π] × R → R is continuous and there exist increasing functions ζl, ζu : [0,∞)→ R, and positive constants A, B...

متن کامل

On the Number of Radially Symmetric Solutions to Dirichlet Problems with Jumping Nonlinearities of Superlinear Order

This paper is concerned with the multiplicity of radially symmetric solutions u(x) to the Dirichlet problem ∆u+ f(u) = h(x) + cφ(x) on the unit ball Ω ⊂ RN with boundary condition u = 0 on ∂Ω. Here φ(x) is a positive function and f(u) is a function that is superlinear (but of subcritical growth) for large positive u, while for large negative u we have that f ′(u) < μ, where μ is the smallest po...

متن کامل

One-sided Resonance for Quasilinear Problems with Asymmetric Nonlinearities

for two consecutive variational eigenvalues, λl < λl+1 of −∆p on W 0 (Ω), and some ε > 0 (see Section 2 for the definition of the variational spectrum). The special case where α+(x) = α−(x) ≡ λl and q = 1 was recently studied by Arcoya and Orsina [1], Bouchala and Drábek [3], and Drábek and Robinson [8] (see also Cuesta et al. [6] and Dancer and Perera [7]). In the present paper, we prove a sin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topological Methods in Nonlinear Analysis

سال: 1995

ISSN: 1230-3429

DOI: 10.12775/tmna.1995.025